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Introduction

In multiplier-less hardware implementations of DSP transforms, multiplication-by-constants are imple-
mented as a network of (wire-)shifts and additions. The number of additions required can be reduced by
approximating the multiplicative constants using lower precision fixed-point representations, but the loss of
precision increases the numerical error in the implementation. This trade-off can be leveraged to reduce the
hardware area, critical path and power/energy while maintaining the perceptible quality of a signal process-
ing application (e.g., MPEG-4). This paper describes an automatic approach to minimize the number of
additions subject to a given quality measure, or, vice-versa, to maximize the quality subject to a given num-
ber of available additions. Our automatic approach can handle linear DSP transforms in general and includes
optimizations over the space of algorithm design. A Verilog backend generates synthesizable descriptions
of the final variable-width fixed-point implementations.

Approach

We consider the following two optimization problems for a given linear DSP transform: (1) Given a quality
threshold Q, find the multiplierless implementation with the least arithmetic cost C that satisfies Q; (2)
Given an arithmetic cost threshold C, find the multiplierless implementation with the highest quality Q.
Our proposed system automatically solves this problem in the following steps. We consider problem (1);
problem (2) is analogous.

Given is a formally specified linear DSP transform T (e.g., a DCT of size 8) and the quality threshold Q

(e.g., the maximum allowed error of the output).
Step 1: Generating a Fast Algorithm. First, we generate a fast algorithm for T represented as a

formula in a mathematical notation using SPIRAL1. The formula is built from few constructs and primitives
such as the Kronecker product ’⊗’, permutation matrices, or 2 × 2 rotations Rα. For example, one out of
many possible formulas for the DCT of size 8 looks like

DCT8 = [(2, 5)(4, 7)(6, 8), 8] · (diag(1, 1√
2
) ⊕ R 3

8
π
⊕R 15

16
π
⊕R 21

16
π
)

·[(2, 4, 7, 3, 8), 8] · ((F2 ⊗13) ⊕ 12) · (14 ⊕ R 3

4
π
⊕12) · [(2, 3, 4, 5, 8, 6, 7), 8]

·(12 ⊗ ((F2 ⊕12) · [(2, 3), 4] · (12 ⊗ F2))) · [(1, 8, 6, 2)(3, 4, 5, 7), 8].

Step 2: Manipulation for Numerical Stability. In the second step, we formally manipulate the formula
to increase its numerical stability, which determines how quick the quality of T degrades when implemented
in low precision. In particular, we expand the formula into lifting steps using ideas from2.

∗The work of Markus Püschel was supported by DARPA through research grant DABT63-98-1-0004 administered by the Army
Directorate of Contracting and by NSF through award 9988296

1J. Moura, J. Johnson, R. Johnson, D. Padua, V. Prasanna, M. Püschel, B. Singer, M. Veloso, and J. Xiong. Generating Platform-
Adapted DSP Libraries using SPIRAL. In Proc. HPEC, 2001. http://www.ece.cmu.edu/∼spiral.

2J. Liang and T.D. Tran. Fast Multiplierless Approximations of the DCT With the Lifting Scheme. In IEEE Transactions on
Signal Processing, Vol.49, No.12, Dec 2001, pages 3032-3044.
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Figure 1: Evolutionary optimization. Left: for DCT8 minimizing number of additions for various given
coding gains (cg); right: for DFT16 optimizing convolution error for various given numbers of additions.

Step 3: Constant Reduction and Search. In this step the actual constrained optimization is performed
using an automated search. The idea is to replace each occurring constant (multiplication) in the formula
by a low-precision version, specified by the number of bits in {0, 1, . . . bmax}. Doing so for every constant
yields an approximation T̃ of the original transform T ; T̃ has a lower cost C than the original, i.e., requires
less additions. If the formula for T contains n multiplier constants a1, . . . , an, there are (bmax + 1)n many
ways of approximation, which determines the search space for our optimization. Since an exhaustive search
is infeasible we use evolutionary and greedy search techniques to find the approximation with the lowest
cost (least number of additions) that still satisfies the quality threshold Q.

Step 4: Mapping to Verilog. In this final step we map the found (approximated) formula into Verilog.

We note that in the above the approach, the formula, i.e., algorithm chosen for the transform was fixed.
The optimization can readily be extended to include the space of different possible formulas into the opti-
mization using SPIRAL’s formula generator.

Experimental Results

We show two examples for two different optimization problems for the discrete cosine transform (DCT) and
discrete Fourier transform (DFT).

DCT, size 8. We chose as quality measure coding gain (cg) in dB, which for the exact (infinite precision)
DCT is about 8.8259. We considered one formula for the DCT generated by SPIRAL (similar to the one
above). A 10-bit multiplierless implementation for this formula requires 56 additions. After formula manip-
ulation, we considered 9 constants in the formula for further approximation, which yields a search space of
size 910. Figure 1 (left) shows the results of an evolutionary search for various cg thresholds. The abscissa
shows the generations in this search, the ordinate the found solution with the least cost. For example, after
100 generations, for cg = 8.81 a solution with only 31 adders was found. The search took 30 minutes.

DFT, size 16. We chose as quality measure the convolution error (ce), which determines to what extent
the DFT’s convolution property is violated. The exact DFT has ce = 0. Again we considered one particular
formula, whose 10-bit implementation requires 256 adders. Figure 1 (right) shows the results for fixing the
number of additions and optimizing the achievable quality. For example, by allowing 170 adders, a solution
with ce = 0.341 was found after 150 generations. The search took 2 hours.
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Research Overview
Linear DSP transforms
- e.g. DFT, DCTs, WHT, DWTs, ….
- ubiquitously used, often in computation intensive kernels
- comprised of additions and multiplication-by-constant
- applications: multimedia, bio-metric, image/data processing . . . .

Light-weight hardware implementations
- fixed-point data format 
- multiplierless: mult-by-constant as shifts and adds
- problem 1: output quality reduced by cost-saving measures

(reducing the bitwidth of data and constants) 
- problem 2: different applications have vastly different quality 

metric and requirements
⇒ need application specific tuning

Our Goal: automatic, custom reduction of arithmetic   
(additions) w.r.t. a given  application’s requirements
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Our Automatic Flow
DSP transform

custom low-cost 
algorithm

search for cheapest const. 
reduction satisfying Q

algorithm manipulation
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algorithm selection
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Related Work
Liang/Tran, “Fast Multiplierless Approximation of the DCT with the Lifting 
Scheme,” IEEE Trans. Sig. Proc., 49(12) 2001, pp. 3032-3044
- examined arithmetic cost reduction for DCT size 8
- steps performed by hand, exhaustive search

Fang/Rutenbar/Püschel/Chen, “Toward Efficient Static Analysis of Finite-
Precision Effects in DSP Applications via Affine Arithmetic Modeling,” Proc. 
DAC 2003
- efficient static analysis of output error (hard and probabilistic)
- range of input values used/needed
- analysis assumes a common global bitwidth

Püschel/Singer/Voronenko/Xiong/Moura/Johnson/Veloso/Johnson, “SPIRAL 
system”, www.spiral.net
- automatic generation of custom runtime optimized DSP transform software
- provides implementation environment for our approach (in particular algorithm 

generation and manipulation)
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Outline
DSP transform algorithms
Algorithm manipulation for robustness
Multiplication by constants
Search Methods
Results
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DSP Algorithms as Formulas: 
Example DFT size 4

Cooley/Tukey FFT (size 4):

allows for computer generation/manipulation
(provided by SPIRAL)
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Example: DCT size 8
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(generated by SPIRAL) as data flow diagram

Basic building blocks:
- 2 x 2 rotations, DFT_2’s (butterflies), permutations, diagonal matrices (scaling)

Algorithm is orthogonal = robust to input errors (from fixed point representation)
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Outline
DSP transform algorithms
Algorithm manipulation for robustness
Multiplication by constants
Search Methods
Results
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Fixed Point Error: Data vs. Transform

Error in input x: 
- from rounding of the input coefficients x to the fix-point data 

representation 
- for robustness: choose orthogonal algorithms

Error in transform: 
- from finite precision multiplication by constants

further approximation is a source of savings in
multiplierless implementations

- for robustness: translate algorithm into lifting steps

Implementing a transform            in fixed point arithmetic 
produces two type of errors:

Txx α

||~|| xx −

x~

||
~

|| TT −
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Lifting step (LS):

- invertible (det = 1) independent of approximation of x, y
- inverse of LS is also LS (with –x, -y)

∴ if LS is cheap, then so is its inverse

Rotation as lifting steps

Lifting Steps 
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target for approximation
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Error Analysis
rounding error in the first lifting step (third LS analogous)

rounding error in the second lifting step
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Ensuring Robustness
Steps to ensure robustness

Choose algorithms based on rotations
Manipulate angles of rotations
Expand into lifting steps

Done automatically as formula manipulation
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Outline
DSP transform algorithms
Algorithm manipulation for robustness
Multiplication by constants
Search Methods
Results
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Multiplication by Constants

cxy =

Operations in transforms:

21 xxy += additions

multiplication by constant

c=0.11000101

Example:

3 adds (3 shifts)SD recoding 2

c=0.10111011 = 5 adds (5 shifts)simple

SD recoding is not optimal

c=0.11001101 4 adds (3 shifts)SD recoding 1



HPEC 2003, Slide 15Misra, Zelinski, Hoe, Püschel, CMU/ECE

Addition/Subtraction Chain

c=0.10111011
+

0.10110000

0.00001011
+

0.000000010.00001010

0.00000100

0.00000101

x16

+

0.00000001

x2

Provide optimal solution for 
constant mult using adds and shifts

Finding the optimal addition chain 
is a hard problem

A near optimal table of solutions 
can be computed using dynamic 
programming methods*

For all constants up to 219

- only 225 constants require 
more than 5 additions
(214@6, 11@7)

3 adds (3 shifts)

*Sebastian Egner, Philips Research, Eindhoven
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Optimization Problem
Given a linear DSP transform and quality measure Q

1. Find the multiplierless implementation with the least 
arithmetic cost C (number of additions) that satisfies a 
given Q threshold

2. Find the multiplierless implementation with the highest 
quality Q for a given arithmetic cost C threshold
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Quality Measures of Transforms

Transform independent Q
- for some norm || · ||

Transform dependent Q
- coding gain for DCT
- convolution error for DFT

Application-based Q
- MPEG standard compliance test

For an approximation     of a transform T.T
~

||
~

|| TT −
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Search Space: approximating 
multiplicative constants

For each multiplication-by-constant in the transform 
choose custom bitwidth 
- Given n constants,     configurations are possible

But, for a given constant, not all k configurations lead 
to different cost, 

e.g., given 5-bit constant 0.11101, SD recoding gives
5-bit = .11101 = 1.00101 ⇒ 2 adds
4-bit = .1110 = 1.0010 ⇒ 1 adds
3-bit = .111 = 1.001 ⇒ 1 adds
2-bit = .11 = 0.11 ⇒ 1 adds
1-bit = .1 = 0.1 ⇒ 0 adds
0-bit = 0 = 0 ⇒ 0 adds

]10[ −∈ ki Κ
nk

Recall all constants up to 19-bits can be reduced to 5 adds
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Search Methods
Global Bitwidth
- all constant assigned the same bitwidth
- very fast (small search space), but only works well in some cases

Greedy Search
- starting with maximum bitwidth, in each round, choose one constant 

to be reduced by 1-bit that minimizes quality loss 
(also go bottom-up instead of top-down)

- local minima traps are possible
Evolutionary Search
- start with a population of random configurations
- in each round

1. breed a new generation by crossbreeding and mutations
2. select from generation the fittest members
3. repeat new round

- local minima traps
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Algorithm manipulation for robustness
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Interaction between 
Transforms, Q and Search

Goal: given a transform and a required Q threshold, find an 
approximation to the transform that requires the fewest additions
Transforms and Q tested

3 searches methods were compared
entire framework implemented as part of SPIRAL (www.spiral.net)

LC MP3 decoder♣18x36 IMDCT

Limited Compliance (LC) 
MP3 decoder♣32-pt. DCT-II

Convolution error = 116-pt. DFT

8.82 dB coding gain (cg)8-pt. DCT-II

Quality ThresholdTransform

♣MAD Decoder by Robert Mars, http://www.underbit.com/products/mad
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Choosing 31 bits for all constants: 126 additions
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Solution with 36 additions

Evolutionary Search DCT of size 8 with 12 constants
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Summary of Search Comparison

One search method alone is not sufficient — each 
search performs differently depending on transform 
and quality measure

6431222500126initial (31 bits)

n/an/a15457greedy 
(bottom-up)

17041715856greedy 
(top-down)

21249018536evol.

18240816840global

18x36 IMDCT 
(LC MP3)

32 pt. DCT-II 
(LC MP3)

16 pt. DFT 
(conv. err = 1)

8 pt. DCT-II 
(8.82 dB cg)

Number of Additions (fewer is better)
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Approximation of DCT within JPEG
Approximate DCT-II inside JPEG while retain images 
of reasonable quality 
- Q = Peak Signal to Noise Ratio (decibels) of decompressed 

JPEG image against the original uncompressed input image.

- Q Threshold
• Test Image:  Lena, 512x512 pixel, 8-bit grayscale
• PSNR must be at least 30 decibels or 

image becomes noticeably lossy).

⎟
⎠
⎞

⎜
⎝
⎛×=
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255

log20PSNR 10
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Approximation of DCT within JPEG
Before approximating, the original DCT♣ requires 261 additions and 
produces a Lena image with a PSNR of 37.6462 dB.

Compare constants global vs. greedy search:
- Global: [ 3/2, 3/2, 3/2, 3/2, 3/2, 3/2, 3/2, 1/2, -1/2, 1, 

-1/2, -1/2, 1/2, -1/2, -1, 1, -1, -1/4, 1/2, -1/4 ]
- Greedy: [ 3/2, 1, 1, 1, 1, 1, 1, 1/2, -1/2, 1, -1/2, 

0, 1/2, 0,  -1, 1, -1, 0, 1/2, -1/4 ]
- Greedy succeeds in zeroing 3 constants that affect the high frequency 

(HF) outputs ‘thrown away’ by JPEG

32.450328greedy (t-d)

36.532367evolutionary

30.035437global

PSNR# AdditionsMethod

♣Base on source from Independent JPEG Group (IJG), http://www.ijg.org
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Summary
Application specific tuning yields ample opportunities 
for optimization
The optimization flow can be automated
- algorithm selection and manipulation
- arithmetic reduction through search
- arbitrary quality measures supported

Details of the arithmetic reduction is non-trivial
- non-monotonic relation between Q and C
- different search methods succeed in different scenarios

The results of this study needs to be combined with 
other aspects of DSP domain-specific high-level 
synthesis
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